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Abstract

Markerless vision-based human motion analysis has the potential to provide an inexpensive, non-obtrusive solution for the estimation
of body poses. The significant research effort in this domain has been motivated by the fact that many application areas, including sur-
veillance, Human-Computer Interaction and automatic annotation, will benefit from a robust solution. In this paper, we discuss the
characteristics of human motion analysis. We divide the analysis into a modeling and an estimation phase. Modeling is the construction
of the likelihood function, estimation is concerned with finding the most likely pose given the likelihood surface. We discuss model-free
approaches separately. This taxonomy allows us to highlight trends in the domain and to point out limitations of the current state of the

art.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Human body pose estimation, or pose estimation in
short, is the process in which the configuration of body
parts is estimated from sensor input. When poses are esti-
mated over time, the term human motion analysis is used.
Traditionally, motion capture systems require that (electro-
magnetic) markers are attached to the body. These systems
have two major drawbacks: they are obtrusive and expen-
sive. Many applications, especially in surveillance and
Human—Computer Interaction (HCI), would benefit from
a solution that is markerless. Vision-based motion capture
systems attempt to provide such a solution, using cameras
as sensors. Over the last two decades, this topic has
received much interest, and it continues to be an active
research domain. In this overview, we summarize the char-
acteristics of and challenges presented by markerless
vision-based human motion analysis. The literature is dis-
cussed, with a focus on recent work. However, we do not
intend to give complete coverage to all work.
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1.1. Scope of this overview

Human motion analysis is a broad concept. In theory, as
many details as the human body can exhibit could be
estimated. This includes facial movement, movement of
the fingers and changes in skin surface as a result of muscle
tightening. In this overview, pose estimation is limited to
large body parts (trunk, head, limbs). Note that, in human
motion analysis, we are only interested in the configura-
tions of the body parts over time and not interpretations
of the movement. This means that pose recognition, which
is classifying the pose to one of a limited number of classes,
and gesture recognition, which is interpreting the
movement over time, are not discussed in this overview.
For some applications, the positioning of individual body
parts is not important. The entire body is tracked as a
single object, which is termed human tracking or detection.
This is often a preprocessing step for human motion
analysis, and we will not discuss the topic in detail in this
overview. Surveys of literature on related fields can be
found in [78,25] (gesture recognition), and [125] (face
recognition).
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In the remainder of this section, we summarize past sur-
veys and taxonomies, and describe the taxonomy that is
used throughout this overview.

1.2. Surveys and taxonomies

Within the domain of human motion analysis, several
surveys have been written, each with a specific focus and
taxonomy. Gavrila [27] divides research into 2D and 3D
approaches. 2D approaches are further subdivided into
approaches with or without the explicit use of shape mod-
els. Aggarwal and Cai [4] use a taxonomy with three cate-
gories: body structure analysis, tracking and recognition.
Body structure analysis is essentially pose estimation and
is split up into model-based and model-free, depending
upon whether a priori information about the object shape
is employed. A taxonomy for tracking is divided into single
and multiple perspectives. Moeslund and Granum [63,64]
use a taxonomy based on subsequent phases in the pose
estimation process: initialization, tracking, pose estimation
and recognition. Wang et al. [121] use a taxonomy similar
to [4]: human detection, human tracking and human
behavior understanding. Tracking is subdivided into
model-based, region-based, active contour-based and fea-
ture-based. Wang and Singh [120] identify two phases in
the process of computational analysis of human move-
ment: tracking and motion analysis. Tracking is discussed
for hands, head and full bodies.

Currently, we see some new directions of research such
as combining top—down and bottom-up models, particle
filtering algorithms for tracking, and model-free
approaches. We feel that many of these trends cannot be
discussed appropriately within the taxonomies mentioned
above. We observe that studies can be divided into two
main classes: model-based (or generative) and model-free
(or discriminative) approaches. Model-based approaches
employ an a priori human body. The pose estimation pro-
cess consists of modeling and estimation [100]. Modeling is
the construction of the likelihood function, taking into
account the camera model, the image descriptors, human
body model and matching function, and (physical) con-
straints. We discuss the modeling process in detail in Sec-
tion 2. Estimation is concerned with finding the most
likely pose given the likelihood surface. The estimation
process is discussed in Section 3. Model-free approaches
do not assume an a priori human body model but implicitly
model variations in pose configuration, body shape, cam-
era viewpoint and appearance. Due to their different nature
in both modeling and estimation, we discuss them sepa-
rately in Section 4. We conclude with a discussion of open
challenges and promising directions of research.

2. Modeling
The goal of the modeling phase is to construct the func-

tion that gives the likelihood of the image, given a set of
parameters. These parameters include body configuration

parameters, body shape and appearance parameters and
camera viewpoint. Some of these parameters are assumed
to be known in advance, for example a fixed camera view-
point, or known body part lengths. Estimating a smaller
number of parameters makes the problem more tractable
but also poses limitations on the visual input that can be
appropriately analyzed. Note that the relation between
pose and observation is multivalued, in both directions.
Due to the variations between people in shape and appear-
ance, and a different camera viewpoint and environment,
the same pose can have many different observations. Also,
different poses can result in the same observation. Since the
observation is a projection (or combination of projections
when multiple cameras are deployed) of the real world,
information is lost. When only a single camera is used,
depth ambiguities can occur. Also, because the visual reso-
lution of the observations is limited, small changes in pose
can go unnoticed.

Model-based approaches use a human body model,
which includes the kinematic structure and the body
dimensions. In addition, a function that describes how
the human body appears in the image domain, given the
model’s parameters, is used. Human body models are
described in Section 2.1.

Instead of using the original visual input, the image is
often described in terms of edges, color regions or silhou-
ettes. A matching function between visual input and the
generated appearance of the human body model is needed
to evaluate how well the model instantiation explains the
visual input. Image descriptors and matching functions
are described in Section 2.2. Other factors that influence
the construction of the likelihood function are the camera
parameters (Section 2.3) and environment settings (Section
2.4).

2.1. Human body models

Human body models describe both the kinematic prop-
erties of the body (the skeleton), as the shape and appear-
ance (the flesh and skin). We discuss both below.

2.1.1. Kinematic models

Most of the models describe the human body as a kine-
matic tree, consisting of segments that are linked by joints.
Every joint contains a number of degrees of freedom
(DOF), indicating in how many directions the joint can
move. All DOF in the body model together form the pose
representation. These models can be described in either 2D
or 3D.

2D models are suitable for motion parallel to the image
plane and are sometimes used for gait analysis. Ju et al.
[44], Haritaoglu et al. [33] and Howe et al. [38] use a so-
called Cardboard model in which the limbs are modeled
as planar patches. Each segment has seven parameters that
allow it to rotate and scale according to the 3D motion.
Navaratnam et al. [70] take a similar approach but model
some parameters implicitly. In [40], an extra patch width
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parameter was added to account for scaling during in-plane
motion. In [16,1], the human body is described by a 2D
scaled prismatic model [68]. These models have fewer
parameters and enforce 2D constraints on figure motion
that are consistent with an underlying 3D kinematic model.
But despite their success in capturing fronto-parallel
human movement, the inability to encode joint angle limits
and self-intersection constraints renders 2D models unsuit-
able for tracking more complex movement.

3D models most often model segments as rigid, and
allow a maximum of three (orthogonal) rotations per joint.
For each of the rotations individually, kinematic con-
straints can be imposed. Instead of segments that are linked
with zero-displacement, Kakadiaris and Metaxas [46]
model the connection by constraints on the limb ends. In
a similar fashion, Sigal et al. [99] model the relationships
between body parts as conditional probability distribu-
tions. Bregler et al. [13] introduce a twist motion model
and exponential maps which simplify the relation between
image motion and model motion. The kinematic DOF can
be recovered robustly by solving simple linear systems
under scaled orthogonal projection.

The number of DOF that are recovered varies between
studies. In some studies, a mere 10 DOF are recovered in
the upper body. Other studies estimate full-body poses with
no less than 50 DOF [3,5]. But even for a model with a lim-
ited number of DOF and a coarse resolution in (discrete)
parameter space, the number of possible poses is very high.
Applying kinematic constraints is an effective way of prun-
ing the pose space by eliminating infeasible poses. Typical
constraints are joint angle limits [118,21] and limits on
angular velocity and acceleration [124]. The fact that
human body parts are non-penetrable also introduces con-
straints [105].

2.1.2. Shape models

Apart from the kinematic structure, the human shape is
also modeled. Segments in 2D models are described as rect-
angular or trapezoid-shaped patches (see Fig. 1(a)). In 3D
models segments are either volumetric or surface-based.
Volumetric shapes depend on only a few parameters. Com-
monly used volumetric models are spheres [74], cylinders
[34,87,93] or tapered super-quadrics [19,28,47] (see
Fig. 1(b)). Instead of modeling each segment as a separate
rigid shape [15], surface-based models often employ a sin-
gle surface for the entire human body (see Fig. 1(c)). These
models typically consist of a mesh of polygons that is
deformed by changes to the underlying kinematic structure
[5,45,9]. Plinkers and Fua [79] use a more complex body
shape model, consisting of three layers: kinematic model,
metaballs (soft objects) and a polygonal skin surface.

The parameters of the shape model, such as shape
lengths and widths, are sometimes assumed fixed. How-
ever, due to the large variability among people, this will
lead to inaccurate pose estimations. Alternatively, these
parameters can be recovered in an initialization step, where
the observed person is to adopt a specified pose [15,6].

While this approach works well for many applications, it
restricts use in surveillance or automatic annotation sys-
tems. Online adjustment of these parameters is possible
by relying on statistical priors [30] or specific key poses
[18,8]. Cheung et al. [17] and Mikic et al. [61] use a number
of cameras and recover segment shape and joint positions
by looking at motion of individual points. Krahnstover
et al. [49] report similar work for the upper body using a
single camera but only seem to support movement parallel
to the image plane.

The likeliness of the model instantiation given the image
can be calculated when functions are available that
describe how the model instantiation appears in the image
domain and calculate the distance between given image and
synthesized model. We describe model appearance in the
image domain, and the matching functions, in Section 2.2.

2.2. Image descriptors

The appearance of people in images varies due to differ-
ent clothing and lighting conditions. Since we focus on the
recovery of the kinematic configuration of a person, we
would like to generalize over these kinds of variation. Part
of this generalization can be handled in the image domain
by extracting image descriptors rather than taking the ori-
ginal image. From a synthesis point of view, this means
that we do not need complete knowledge about how a
model instantiation appears in the image domain. Often
used image descriptors include silhouettes, edges, 3D
reconstructions, motion and color. We describe these next.

2.2.1. Silhouettes and contours

Silhouettes and contours (silhouette outlines) can be
extracted relatively robustly from images when back-
grounds are reasonably static. In older studies, back-
grounds were often assumed to be different in appearance
from the person. This eliminates the need to estimate envi-
ronment parameters. Silhouettes are insensitive to varia-
tions in surface such as color and texture, and encode a
great deal of information to help recover 3D poses [3].
However, performance is limited due to artifacts such as
shadows and noisy background segmentation, and it is
often difficult or impossible to recover certain DOF due
to the lack of depth information (see Fig. 2). A matching
function is often based on area overlap. In model-free
approaches, silhouettes are encoded using central moments
[11] or Hu moments [89]. Contours can be encoded using a
combination of turning angle metric and Chamfer distance
[35] or shape contexts [7], and can be compared based on
deformation cost [66].

2.2.2. Edges

Edges appear in the image when there is a substantial
difference in intensity at different sides of the image loca-
tion. Edges can be extracted robustly and at low cost. They
are, to some extent, invariant to lighting conditions, but are
unsuitable when dealing with cluttered backgrounds or tex-
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Fig. 1. Human shape models with kinematic model. (a) 2D model (reprinted from [40], © IEEE 2002); (b) 3D volumetric model consisting of
superquadrics (reprinted from [47], © Elsevier, 2006); (c) 3D surface model (reprinted from [15], © ACM, Inc., 2003).
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Fig. 2. Depth ambiguities when using monocular silhouettes [35] (©
IEEE, 2004).

tured clothing. Therefore, edges are usually located within
an extracted silhouette [46,118,87] or within a projection of
a human model [23]. Matching functions take into account
the normalized distance between model’s synthesized edges
and the closest edge found in the image. Rohr [87] uses
edge lines instead of edges to partially eliminate silhouette
noise. A distance measure based on difference in line seg-
ment length, center position and angle is applied.

2.2.3. 3D reconstructions
Edges and silhouettes lack depth information, at least
when only a single camera is used. This also makes it hard

to detect self-occlusions. When multiple cameras are used,
a 3D reconstruction can be created from silhouettes that
are extracted in each view individually. Two common tech-
niques are volume intersection [9] or a voxel-based
approach [17,61].

Another way of obtaining depth information is by using
stereometry. Corresponding points are sought in views of
calibrated camera pairs. Using triangulation, the depths
of the points are calculated. This approach has been taken
by Plinkers and Fua [79] and Haritaoglu et al. [33]. Stereo
is also used by Jojic et al. [43], with the optional aid of pro-
jected light patterns. Matching functions are based volume
overlap or mean closest point distance.

2.2.4. Color and texture

Modeling the human body based on color or texture is
inspired by the observation that the appearance of individ-
ual body parts remains substantially unchanged, although
the body may exhibit very different poses. The appearance
of individual body parts can be described using Gaussian
color distributions [123] or color histograms [81]. Roberts
et al. [85] propose a 3D appearance model to overcome
the problems with changing appearance due to clothing,
illumination and rotations. They model body parts with
truncated cylinders, with surface patches described by a
multi-modal color distribution. The appearance model is
constructed on-line from monocular image streams. Barron
and Kakadiaris [6] minimize the sum of pixel-wise intensity
differences between the image and synthesized model. Skin
color can be a good cue for finding head and hands. In [53],
additional clothing parameters are used to model sleeve,
hem and sock lengths.
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2.2.5. Motion

Motion can be measured by taking the difference
between two consecutive frames. The brightness of the pix-
els that are part of the person in the image are assumed to
be constant. The pixel displacement in the image is termed
optical flow and is used by Bregler et al. [13] and Ju et al.
[44]. Sminchisescu and Triggs [105] use optical flow to con-
struct an outlier map that is used to weight the importance
of edges.

2.2.6. Combination of descriptors

A likelihood function that takes into account a combi-
nation of descriptors proves to be more robust. Silhouette
information can be combined with edges [21], optical flow
[36] or color [17]. In [92], edges, ridges and motion are used.
Filter responses for these image cues are learned from
training data. Ramanan and Forsyth [81] use edges and
appearance cues. Care must be taken in constructing the
likelihood function, especially when multiple image
descriptors are used. Not unusually, a body part configura-
tion that results in a low cost for one image descriptor, will
also result in a low cost for a second one. When the likeli-
hood function simply multiplies the cost function for each
image descriptor, this may lead to sharp peaks in the like-
lihood surface. This results in less effective estimation.

2.3. Camera considerations

Regarding the number of cameras that is used, monoc-
ular work [38,3,105,93] is appealing since for many applica-
tions only a single camera is available. When only a single
view is used, self-occlusions and depth ambiguities can
occur. Sminchisescu and Triggs [105] estimate that roughly
one third of all DOF are almost unobservable. These are
mainly motions in depth but also rotations of near-cylin-
drical limbs about their axes. These limitations can be alle-
viated by using multiple cameras. In general, there are two
main approaches. One is to search for features in each cam-
era image separately and in a later stage combine the infor-
mation to resolve ambiguities [19,28,90,83]. The second
approach is to combine the information as early as possible
into a 3D reconstruction, as we described before. When
multiple cameras are used, calibration is an important
requirement. Instead of combining the views, Kakadiaris
and Metaxas [46] use active viewpoint selection to deter-
mine which cameras are suitable for estimation.

Most studies assume a scaled orthographic projection
which limits their use to distant observations, where per-
spective effects are small. Rogez et al. [86] remove the per-
spective effect in a preprocessing step.

2.4. Environment considerations

Most of the approaches described in this overview can
handle only a single person at a time. Pose estimation of
more than one person at the same time is difficult because
of occlusions and possible interactions between the per-

sons. However, Mittal et al. [62] were able to extract silhou-
ettes of all persons in the scene using the M,Tracker. A
setup with five cameras provides the input for their
method. The W*S system [33] is able to track multiple per-
sons and estimate their poses in outdoor scenes using stereo
image pairs and appearance cues.

The results that are obtained are largely influenced by
the complexity of the environment. Outdoor scenes are
much more challenging due to the dynamic background
and lighting conditions. In most work, the persons are vis-
ible without occlusion by other objects. It remains a chal-
lenge to recover poses of people under significant
occlusion.

3. Estimation

The estimation process is concerned with finding the set
of pose parameters that minimizes the error between obser-
vations on the one hand, and on the other the projection of
the human body model (model-based), projection function
(learning-based) or example set (example-based). We can
identify two classes of estimation: top—down and bot-
tom—up. Top—down approaches match a projection of the
human body with the image observation. Instead, in bot-
tom-up approaches individual body parts are found and
then assembled into a human body. Recent work combines
these two classes. We discuss both classes and their combi-
nation in Section 3.1.

The likelihood function often has many local maxima
[106]. In this section, we will assume that instead of a like-
lihood function, a cost function has been constructed.
Therefore, we search for minima instead of maxima. Given
the high dimensionality of the search space, this search
must be efficient. The speed of the pose recovery depends
largely on the speed of the estimation strategy. Some
approaches report estimation times of several minutes per
frame, other approaches can estimate human motion in
real time [23].

Many methods are single-hypothesis approaches.
Recent studies maintain multiple hypotheses. This reduces
the probability of getting stuck at a local minimum. We
discuss single and multiple hypothesis tracking, and batch
methods, in Section 3.2.

Estimation of poses over time can be made more stable
by assuming a motion model. Usually, these models are
specific for a given activity. In Section 3.4, both explicit
and implicit motion models are discussed.

3.1. Top—down and bottom—up estimation

There are two main approaches for model-based estima-
tion: top—down and bottom-up. Recent work combines
these approaches to benefit from the advantages of both.

3.1.1. Top—down estimation
Top-down approaches match a projection of the human
body with the image observation. This is termed an analy-
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sis-by-synthesis approach. A local search is often per-
formed around an initial pose estimate [28,13,6]. A brute-
force local search is computationally expensive due to the
high dimensionality of the pose space. Therefore, the a pos-
teriori pose estimate is often found by applying gradient
descent on the cost surface [118]. The search can also be
performed in the image domain. Delamarre and Faugeras
[19] use forces between extracted silhouettes and the pro-
jected model to refine the pose estimation. Alternatively,
sampling-based approaches are taken. We discuss these in
the next section.

One drawback of top—down estimation is the fact that
(manual) initialization in the first frame of a sequence is
needed since the initial estimate is often obtained from
the estimate in the previous frame. Another drawback is
the computational cost of forward rendering the human
body model and calculating the distance between the ren-
dered model and the image observation.

Gavrila and Davis [28] take a top—down approach with
search-space decomposition. Poses are estimated in a hier-
archical coarse-to-fine strategy, estimating the torso and
head first and then working down the limbs. The initial
pose prediction is based on constant joint angle accelera-
tion. An analysis-by-synthesis approach is applied in a dis-
crete fashion, resulting in a limited number of possible
solutions per joint.

Top—-down estimation often causes problems with
(self)occlusions. Moreover, errors are propagated through
the kinematic chain. An inaccurate estimation for the
torso/head part causes errors in estimating the orientation
of body parts lower in the kinematic chain. To overcome
this problem, Drummond and Cipolla [23] introduce con-
straints between linked body parts in the kinematic chain.
This allows lower parts to effect parts higher in the chain.
A pose is described by the rigid displacement for each body
part. This yields an over-parameterized system which is
solved in a weighted least-squares framework.

3.1.2. Bottom—up estimation

Bottom—up approaches are characterized by finding
body parts and then assembling these into a human body.
The body parts are usually described by 2D templates.
Often, these templates produce many false positives, as
there are often many limb-like regions in an image.
Another drawback is the need for part detectors for most
body parts, since missing information is likely to result in
a less accurate pose estimate.

The assembling process takes into account physical con-
straints such as body part proximity. Temporal constraints
can be used to cope with occlusions. Bottom-up
approaches have the advantage that no manual initializa-
tion is needed and can be used as an initialization for
top—down approaches.

Mori et al. [67] first perform image segmentation based
on contour, shape and appearance cues. The segments are
classified by body part locators for half-limbs and torso
that are trained on image cues. From this partial configura-

tion, the missing body parts are found. Global constraints,
including body part proximity, relative widths and lengths
and symmetry in color are enforced to prune the search
space. A very similar approach has been taken by Ren
et al. [84], who search for pairwise edges as segment bound-
aries. Ramanan [80] improves the deformable model itera-
tively, but does not perform explicit segmentation. In the
first iteration, only edges are used to locate possible body
parts. A rough region-based model for each body part
and the background is then build from these locations.
New locations are found using this model and the process
is repeated.

In [26] body parts are modeled using 2D appearance
models. They use the concept of pictorial structures to
model the coherence between body parts. An efficient
dynamic programming algorithm is used to find an optimal
solution in the tree of body configurations. Trees are
extended with correlations between body parts in [50].
For walking, correlations between upper arm and leg
swings are used, resulting in more robust pose estimations.
Ronfard et al. [88] use the pictorial structures concept but
replace the body part detectors by more complex ones that
learn appearance models using Support Vector Machines.
Ramanan and Forsyth [81] use simple appearance-based
part detectors, aided by parallel lines. Motion tracking is
reduced to the problem of inference in a dynamic Bayes
net. Evaluation on outdoor sequences shows automatic ini-
tialization and recovery but tracking occasionally fails,
especially for in-plane motion. Ioffe and Forsyth [41] also
take a 2D approach where the appearance of individual
body parts is modeled. Inference is used on a mixture of
trees, to avoid the time consuming evaluation of each
group of candidate primitives. Song et al. [107] use a simi-
lar technique involving feature points and inference on a
tree model.

Sigal et al. [99] describe the human body as a graphical
model where each node represents a parameterized body
part (see Fig. 3(a)). The spatial constraints between body
parts are modeled as arcs. Each node in the graph has an
associated image likelihood function that models the prob-
ability of observing image measurements conditioned on
the position and orientation of the part. Pose estimation
is simply inference in the graphical model. In [95,32], tem-
poral constraints are also taken into account, resulting in a
tracking framework. If individual part locators are used,
there is the risk that the estimated pose does not explain
the image very well. Sigal and Black [97] introduced occlu-
sion-sensitive image likelihoods, which introduces loops in
the graphical model. Recently, they focussed on obtaining
3D poses from these 2D pose descriptions [98].

Ramanan and Sminchisescu [82] train models that max-
imize the likelihood for joint localization of all body parts,
rather than learning individual part locators. Their training
algorithm learns the parameters of a Conditional Random
Field (CRF) from a small number of samples.

In the work by Micilotta et al. [60], the location of a per-
son in the image is found first. Part detectors are learned
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Fig. 3. (a) Relation between body parts described in a graphical model [99] (© MIT Press, 2003); (b) View-based manifold for walking activity [24] (©

IEEE, 2004)).

and an assembly is found by applying RANsAc. Heuristics
are used to filter unlikely poses, and a pose prior deter-
mines the likelihood of the assembly. An example-based
approach (see also Section 4.2) is used to find the most
likely pose based on extracted silhouette, edges, and hand
locations. Although this approach is computationally very
efficient, only frontal poses are regarded. It would be inter-
esting to see how the work could be generalized to more
unconstrained movements.

3.1.3. Combined top—down and bottom—up estimation

By combining pure top-down and bottom-up
approaches, the drawbacks of both can be targeted. Auto-
matic initialization can be achieved within a sound tracking
framework.

Navaratnam et al. [70] use a search-space decomposition
approach. Body parts lower in the kinematic chain are found
using part detectors within an image region that is defined by
the parent in the kinematic chain. This approach is compu-
tationally less expensive but performance depends heavily
on the individual part detectors. Demirdjian [20] uses optical
flow in a top—down approach to select a candidate pose esti-
mate. In addition, a view-based key frame that describes the
appearance of the person is selected. The motion between
the support points of the key frame and the image is used
to refine the estimate. The final pose estimate is obtained
by fusing both model-based and view-based estimates.

Hua et al. [39] incorporate bottom—up information in a
statistical framework. Comparable to Sigal et al. [99], the
human body is modeled as a Markov network. 2D body
poses are inferred using a data driven belief propagation
Monte Carlo algorithm. Shape, edge and color cues are
used to construct the importance sampling functions.

Lee et al. [54] use part detectors and inverse kinematics
to estimate part of the pose space. Bottom—up information
is only used when available, eliminating the need for a part
detector for each limb. The approach targets the draw-
backs of a pure top—down approach, while still providing
a flexible tracking framework. However, the bottom-up
information in used in a fixed analytical way. Not only
does this approach require fixed segment lengths, it also
prevents correct estimation of certain types of poses (e.g.,
poses where the elbow is higher than the hand). In [53],
proposal maps are introduced to facilitate the mapping
from 2D observations to 3D pose space.

Recent work has focussed on the recovery of human
poses in cluttered scenes. [S5] adopt a three-stage approach,
based on [53], to subsequently find human bodies, their 2D
body part locations and a 3D pose estimate. Sminchisescu
et al. [103] learn top—down and bottom-up functions in
alternate steps. The bottom—up process is tuned using sam-
ples from the top—down process, which is optimized to pro-
duce estimates that are close to those predicted by the
bottom—up process. The processes are guaranteed to con-
verge to equilibrium.

3.2. Single and multiple hypothesis tracking

Estimating poses from frame to frame is usually termed
tracking. Tracking is used to ensure temporal coherence
between poses over time, and to provide an initial pose esti-
mate. When it is assumed that the time between subsequent
frames is small, the distance in body configuration is likely
to be small as well. These configuration differences can be
approximately linearly tracked, for example using a Kal-
man filter. Traditional tracking was aimed at maintaining
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a single hypothesis over time. Since this often causes the
estimation to lose track, most recent work propagates mul-
tiple hypothesis in time. Often, a sampling-based approach
is taken. In some works, temporal coherence is achieved by
minimizing pose changes over a sequence of frames in a
batch approach. Related to this is the estimation of 3D
poses from 2D points. Although this topic is outside the
scope of our overview, it is relevant and we choose to
include it. This section discusses these methodologies.

3.2.1. Single hypothesis tracking

The high dimensionality of the pose space prohibits an
exhaustive search of the cost surface. Single hypothesis
approaches include Kalman filtering and local-optimiza-
tion methods [13,118,45]. Gavrila and Davis [28] use a dis-
crete estimation to reduce computation time.

Single hypothesis tracking suffer from accumulation of
errors. In case of ambiguity, such as self-occlusion, there
is always the possibility of selecting the wrong pose. By
maintaining only a single hypothesis, the pose estimation
is likely to ‘drift off’ which makes recovery difficult.

3.2.2. Multiple hypothesis tracking

To overcome the drifting problem of single hypothesis
tracking approaches, multiple hypotheses can be main-
tained. Cham and Rehg [16] use a set of Kalman filters to
propagate multiple hypotheses. This results in more reliable
motion tracking than with a single Kalman filter. Evaluation
on challenging dancing sequences shows that the multiple
hypotheses are able to track movement where a single mode
fails. However, due to their limited appearance model, rota-
tions about limb axes could not be estimated.

Human motion is non-linear due to joint accelerations.
However, Kalman filters are only suitable for tracking lin-
ear motion. Sampling-based approaches (particle filtering
or CONDENSATION [29,42]) are able to track non-linear
motion. In general, a number of particles is propagated
in time using a model of dynamics, including a noise com-
ponent. Each particle has an associated weight, that is
updated according to the cost function. Configurations
with a low cost are assigned a high weight. Since all weights
sum up to one, the pose estimate is obtained by the
weighted sum of all particles. (Or alternatively, the particle
with the maximum weight is selected.)

Although, in theory, sampling-based methods are very
suitable for tracking, the high dimensionality requires the
use of many particles to sample the pose space sufficiently
densely. Every particle comes with an increase in computa-
tional cost due to propagating the particles according to
the dynamical model and the evaluation of the cost func-
tion. For each particle, the human body model must be
rendered and compared to the extracted image descriptors.
Another problem is the fact that particles tend to cluster
themselves on a very small area. This is called sample
impoverishment [48], and leads to a decreasing number of
effective particles. Different particle sampling schemes have
been proposed to overcome this problem. In [122], some

common schemes are evaluated quantitatively on the
human motion tracking task.

Currently, there are two main solutions to make the
problem more tractable. The first one is to use priors on
the movement that can be recognized. This includes learn-
ing motion models to guide the particles more effectively,
and to learn a low-dimensional space which reduces the
number of particles needed. We discuss these topics in Sec-
tion 3.4. A second solution is to spread particles more effi-
ciently in places where a suitable local minimum is more
likely. We discuss this solution below.

Sminchisescu and Triggs [105] introduce Covariance
Scaled Sampling (CSS) to guide the particles. Instead of
inflating the noise component in the model of dynamics,
the posterior covariance of the previous frame is inflated.
Intuitively, this focuses the particles in the regions where
there is uncertainty, for example due to depth ambiguities
as observed in monocular tracking. In the unconstrained
case and given monocular data and known segment length,
each joint has a twofold ambiguity. The connected limb is
either placed forwards, or backwards. This also means that
there are two local minima. When tracking fails, this is
most likely due to choosing the wrong minimum. In
[106], these ambiguities are enumerated in a tree, and the
particles are allowed to ‘jump’ in the pose space accord-
ingly. Deutscher and Reid [21] introduce a different
approach to guide the particles. They use simulated anneal-
ing to focus the particles on the global maxima of the pos-
terior, at the price of multiple iterations per frame. Particles
are distributed widely at initialization, and their range of
movement is decreased gradually over time.

MacCormick and Isard [59] partition the pose space into
a number of lower-dimensional subspaces. Because inde-
pendence between the spaces is assumed, this idea is similar
to search-space decomposition. As we discussed in the pre-
vious section, Lee et al. [54] avoid the need of an inhibiting-
ly large number of particles by updating part of the state
space using analytical inference.

3.2.3. Batch methods

Batch methods optimize poses over a sequence of
frames, and are therefore unsuitable for online tracking.
They avoid the need of propagating multiple hypotheses,
since the most likely sequence of poses can be determined
automatically. Plinkers and Fua [79] and Liebowitz and
Carlsson [57] use least-squares minimization, Brand [11]
and Navaratnam et al. [70] use the Viterbi algorithm to find
the most probable state sequence in an Hidden Markov
Model (HMM).

3.3. 3D pose estimation from 2D points

When only 2D points over a sequence of images are
known, 3D poses can be estimated if a human body model
is taken into account. Liebowitz and Carlsson [57] recon-
struct 3D poses from 2D point correspondences from multi-
ple views and known body segment lengths. Linear
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geometric reconstruction is used to recover the poses of an
entire motion sequence at once. Taylor [111]uses only a sin-
gle view and recovers the entire set of pose solutions by con-
sidering the foreshortening of the segments of the model in
the image. A scaled orthographic projection is assumed,
which limits the approach to far views. Depth ordering must
be specified manually. Lee and Chen [52] recover the camera
parameters from 6 points on the head. They use an interpre-
tation tree to store all kinematic ambiguities that arise from
forward to backward flipping and apply a number of con-
straints to prune impossible configurations. Additionally,
DiFranco et al. [22] use user-specified 3D key frames. A
maximum a posteriori trajectory is calculated using a non-
linear least squares framework, taking into account joint
angle limits and smooth dynamics. In [76], no camera model
is assumed but fixed segment ratios are used.

3.4. Motion priors

Although the human body can perform a very broad
variety of movements, the set of typically performed move-
ments is usually much smaller. Especially when only a sin-
gle class of movements (e.g., walking, swimming) is
regarded, motion priors can aid in performing more stable
tracking. However, this comes as a cost of putting a strong
restriction on the poses that can be recovered.

Many prior models are derived from training data. A
possible weakness of these motion models is that the ability
to accurately represent the space of realizable human
movements generally depends significantly on the amount
of available training data. Therefore, the set of exemplars
must be sufficiently large and account for the variations
that can be observed while tracking the movement.

Generally, we can identify two main classes of motion
priors. The first uses an explicit motion model to guide
the tracking. The second class learns a low-dimensional
activity manifold, in which tracking occurs.

3.4.1. Using motion models

Most statistical motion models can only be used for spe-
cific movements, such as walking [34,87] dancing [83] or
tennis [108]. However, more general models exist [1,77,94].

Howe et al. [38] use snippets of motion from a database
to recover 3D motion given 2D points. From a sequence of
2D poses, the 3D motion is reconstructed by finding the
MAP estimate of the sequence of snippets. Sidenbladh
et al. [94] take a similar approach. They retrieve motion
samples similar to the motion being tracked. The dynamics
of the sample are used to propagate the particles in a par-
ticle filter framework. Ning et al. [71] use a similar
approach, but constrain the propagation of the particles
using physical motion constraints.

Instead of using samples, Pavlovic et al. [77] learn a
dynamical model over the pose space. Agarwal and Triggs
[1] cluster their training data into body poses with similar
dynamics. Principal Component Analysis (PCA) is applied
to reduce the dimensionality for each cluster, followed by

learning a local linear autoregression. A class inference
algorithm is able to estimate the current motion cluster
and allows for smooth transitions between classes.

The work of [14] does not only model the short-term
dynamics but also takes into account the history using Var-
iable Length Markov Models (VLMM). Clusters of ele-
mentary motion are learned from training data and
clustered. State transitions in the VLMM correspond to
one of the clusters. Particles are propagated according to
the dynamics of the selected cluster. The noise vector,
added in the propagation, is sampled from the covariance
of the cluster. This is similar in spirit to CSS [105], where
the noise is sampled from the covariance of the previous
posterior distribution.

3.4.2. Dimensionality reduction

Reducing the dimensionality of the pose space is moti-
vated by the observation that human activities are often
located on a latent space that is low-dimensional [24,31].
As mentioned before, tracking in this low-dimensional
manifold results in lower numbers of required particles.
Currently, manifolds are learned for specific activities, such
as walking, and it remains to be researched how this can be
extended to broader classes of movement.

Tracking in a low-dimensional manifold requires three
components. First, a mapping between original pose space
to low-dimensional manifold must be learned. Second, an
inverse mapping must be defined. Third, it must be defined
how tracking within the low-dimensional space occurs.

Since the mapping between the original pose space and
latent space is in general non-linear, linear PCA is inade-
quate. Algorithms such as Locally Linear Embedding
and Isomap can learn this non-linear mapping but are
not invertible. This inverse mapping is needed because
the full body configuration is required for evaluation of
the likelihood function. Gaussian Process Latent Variable
Models (GPLVM, [51]) and Locally Linear Coordination
(LLC, [112]) do provide the inverse mapping.

Sminchisescu and Jepson [101] use spectral embedding
to learn the embedding, which is modeled as a Gaussian
mixture model. Radial Basis Functions (RBF) are learned
for the inverse mapping. A linear dynamical model is used
for tracking. Urtasun et al. [116] use a GPLVM to learn
prior models for 3D human tracking. GPLVMs generate
smooth mappings between pose space and latent space,
which is useful for the use of gradient descent to optimize
pose estimates. A second-order Gauss—Markov model is
used as a motion model. In later work [119,115], a Gauss-
ian Process Dynamical Model (GPDM) is learned from
training data. The GPDM also learns a dynamical model
in the latent space. Recent work by Moon and Pavlovi¢
[65] has investigated the effect of dynamics in the embed-
ding on human motion tracking.

Tian et al. [113] use a GPLVM for 2D pose estimation.
Particle filtering is used, where the samples are drawn from
the latent space. Alternatively, Li et al. [56] use LLC for
learning the mappings. Smoothing in the latent space is
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not enforced but the mapping is such that close points in
latent space correspond to close poses in the pose space.
Therefore, a simple dynamical model can be used.

4. Model-free approaches

If no explicit human body model is available, a direct
relation between image observation and pose must be
established. Two main classes of pose estimation approach
can be identified: learning-based (Section 4.1) and example-
based (Section 4.2). In learning-based approaches, a func-
tion from image space to pose space is learned using train-
ing data. Example-based approaches avoid learning this
mapping. Instead, a collection of exemplars is stored in a
database, together with their corresponding pose descrip-
tions. For a given input image, a similarity search is per-
formed and candidate poses are interpolated to obtain
the pose estimate. Note that although the inverse mapping
from image space to pose estimate is multi-valued and can-
not be functionally approximated [102], most work treats
the relation as single-valued.

Since variations in body configuration, body dimen-
sions, viewpoint and appearance are implicitly modeled
in the training data, this data needs to generalize well over
the invariant parameters and distinguish well between the
variant ones. The training data must account for the high
non-linearity of the mapping between image and pose
space, which means in practice that the pose space must
be densely sampled in the training set. However, the train-
ing data can be constructed when keeping in mind that not
all kinematically possible poses are also likely.

Model-free algorithms do not suffer from (re)initializa-
tion problems and can in this respect be used for initializa-
tion of model-based pose estimation approaches as we
discussed in Section 3.

4.1. Learning-based

Grauman et al. [30] describe a distribution over both
multi-view silhouettes and 3D joint locations with a mix-
ture of probabilistic PCA. Pose inference is based on the
maximum a posteriori (MAP) estimate. Silhouettes from
a single view are used by Agarwal and Triggs [3]. They
use non-linear regression to model the relation between his-
tograms of shape contexts and 3D poses. Damped least-
squares and Relevance Vector Machine regression over
both linear and kernel bases have been evaluated. Ambigu-
ities are resolved using dynamics.

In recent work, Agarwal and Triggs [2] use histograms
of gradient orientations over a grid of small cells. Non-neg-
ative matrix factorization is used to obtain a set of basis
vectors that correspond to local features on the human
body such as shoulders and bent elbows. When using these
vectors to reconstruct an image with clutter, the edges that
correspond to the person are obtained. This enables them
to recover poses without having to extract the person’s out-
line. Regression is used to recover upper-body poses.

Brand [11] models a manifold of pose and velocity con-
figurations with an HMM. Temporal ambiguities are
resolved by recovering poses over an entire sequence by
applying the Viterbi algorithm. Elgammal and Lee [24]
recover 3D poses from monocular silhouettes using an
intermediary activity manifold (see Fig. 3(b)). Manifolds
are learned from visual input and subsequently, mappings
are learned from manifolds to visual input and 3D poses.
Good generalization for variations in body shape are
reported. However, the manifolds are learned for specific
activities and viewpoints, and it is unclear how the work
would generalize to a more unconstrained motion domain.
In [109], a pose manifold is learned in addition to the image
manifold. LLE is used to learn a mapping between the two
manifolds.

Rosales and Sclaroff [89] observe that the inverse of the
mapping from image space to pose space cannot be mod-
eled by a single function. Therefore, they cluster the 2D
pose space and learn specialized functions for each cluster
from image descriptors to pose space. A neural network is
used as mapping function. In [90], the work is extended to
allow input from multiple cameras. The pose is estimated
for each camera individually and in a subsequent step,
the hypotheses are combined into a set of self-consistent
3D pose hypotheses. Sminchisescu et al. [102] model the
multi-valued nature of the mapping from observation to
pose state with a mixture of expert models. Each expert
learns the conditional state distributions from a database
consisting of samples of pose representation and a rendered
human body model. Shape contexts in addition to local
appearance are used as image descriptors. The samples
involve a number of human activities such as walking, run-
ning and pantomime. Demonstration on monocular com-
plex motions shows convincing results, and tests on
artificial data show that the proposed approach outper-
forms nearest-neighbor and regression methods. Training
these mappings requires large amounts of labelled example
pairs consisting of both image descriptors and poses. In
[69], also data from each of the types separately are used
to improve manifold learning.

Recent work by Taycher et al. [110] transforms the
continuous state estimation problem into a discrete one
by using dividing the state space into regions that approx-
imate the posterior. The observation potential function of
the CRF is learned off-line from a large number of exam-
ples. By focusing only on the regions where the prior state
probability is significant, poses can be recovered in real
time.

4.2. Example-based

Example-based approaches use a database of exemplars
that describe poses in both image space and pose space.
One drawback of these approaches is the large amount of
space needed to store the database.

Mori and Malik [66] extract external and internal con-
tours of an object. Shape contexts are employed to encode
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the edges. In an estimation step, the stored exemplars are
deformed to match the image observation. In this deforma-
tion, the location of the hand-labelled 2D locations of
joints also changes. The most likely 2D joint estimate is
found by enforcing 2D image distance consistency between
body parts. Shape deformation is also used by Sullivan and
Carlsson [108]. To improve the robustness of the point
transferral, the spatial relationship of the body points
and color information is exploited. Loy et al. [58] perform
interpolation between key frame poses based on [111] and
additional smoothing constraints. Manual intervention is
necessary in certain cases.

Bowden et al. [10] fit a non-linear point distribution
model (PDM) to their image observations. The PDM con-
sists of the 2D position of head and hands in the image, the
2D body contour, and the 3D structure of the body. The
PDM is trained on high-dimensional feature vectors that
contain likely body movements. The feature space is pro-
jected on a lower dimensional space. In [75], the poses in
the database are rendered from multiple views, which
makes the approach somewhat invariant to the viewpoint.
For a monocular image, the view is estimated using a linear
discriminant and subsequently the pose is recovered using a
nearest neighbor classifier. Ong and Gong [72] include
views from multiple cameras in the PDM and recover a
pose from multi-view images.

Toyama and Blake [114] also show how to incorporate
exemplars in a probabilistic temporal framework. Silhou-
ettes, described using turning angle and Chamfer distance
are considered by Howe [35]. To achieve temporal coher-
ence, he uses Markov Chaining with subsequent smoothing
over a sequence of frames. In later work [36], optical flow
information is used in addition. Motion is used in the esti-
mation process by Ong et al. [73]. Their exemplar space is
clustered and flow vectors between clusters are learned
from sequences of training data. A particle filter frame-
work is used where the particles are guided by the flow vec-
tors. This reduces the number of particles needed but puts a
strong prior on the motions that can be estimated.

The computational complexity of a naive Nearest Neigh-
bor search is linear in the number of exemplars. For recov-
ering more unconstrained movements or high number of
DOF, the number of exemplars grows substantially. There-
fore, Shakhnarovich et al. [91] introduce Parameter Sensi-
tive Hashing (PSH) to rapidly estimate the pose given a
new image. Because of the ambiguity in the use of silhouettes
alone, they use edge direction histograms within a contour.
PSH is also applied in [83], where a bit string of binary local
features [117] extracted from silhouettes obtained using
three views are used instead. In addition to PSH, they use
a motion graph to find those poses that are not only close
in image space, but are also close in pose space.

5. Discussion

Human motion analysis is a challenging problem due to
large variations in human motion and appearance, camera

viewpoint and environment settings. On the other hand, we
know much about people’s physical appearance and move-
ments. The key point for successful human motion analysis
is to use this knowledge effectively. Over the last two decades,
a large amount of research has been conducted. Human
body models that were initially described in 2D have now
evolved into highly articulated 3D models. Deterministic lin-
ear tracking has been replaced by sampling-based tracking
frameworks that evaluate the cost function effectively. The
role of machine learning plays an increasingly important role
in human motion analysis, and will continue to do so.

For each of the methodologies described in this survey,
prior knowledge about human movement or appearance is
incorporated more and more effectively. For example, joint
angle limitations are directly encoded during tracking,
instead of as a pose space pruning technique. But although
many of these advances have led to impressive results given
the complexity of the task, the domain was always limited.
Not unusually, it is assumed that a person has been found
in the image in a preprocessing step. Furthermore, assump-
tions about the viewpoint, appearance and motion are
often made.

We expect that combining methodologies is the solution
to use prior knowledge even more effectively. Indeed,
recent work explores these kind of combinations. While
much research is needed, these works are certainly promis-
ing. For example, model-based and model-free approaches
have been combined [60] to allow for automatic initializa-
tion and recovery. Another promising direction of research
is the recent combination of bottom-up and top-down
approaches, as described in Section 3.1. This has led to
effective tracking frameworks. Also, 2D and 3D models
have been combined to facilitate detection and subsequent
pose estimation [3,12]. Also, they have the potential to deal
more effectively with occlusions, a problem that is often
ignored. Work by Howe [37] also addresses this issue.

Also, the role of context should be used more explicitly.
Human motion analysis provides input for reasoning about
actions and intentions. Reversely, context can be used for
human motion analysis, other than implicitly by assuming
a fixed domain. Recent work aims at learning models that
are conditioned on the context [14,104].

The role of human motion models, and how they gener-
alize to broader domains remains to be investigated. Also,
the suitability of low-dimensional latent spaces for recovery
of more spontaneous movement needs to be assessed.

From a practical perspective, evaluation of motion anal-
ysis algorithms requires a common database, representative
for a broad range of domains (indoor, static scenes, and
dynamic, cluttered scenes with multiple persons). This
database should consist of ground truth data and image
sequences. In addition, common criteria (accuracy,
smoothness, speed) for evaluation are needed. The recently
introduced HumanEva-I database [96] is a good first step
in this direction. When the evaluation criteria are generally
accepted, this will contribute significantly in determining
promising directions of research.



R. Poppe | Computer Vision and Image Understanding 108 (2007) 4-18 15

Acknowledgments

This work was supported by the European IST Pro-
gramme Project FP6-033812 (Augmented Multi-party
Interaction with Distant Access, publication AMIDA-3),
and is part of the ICIS program. ICIS is sponsored by
the Dutch government under contract BSIK03024. The
author wishes to thank Dariu Gavrila and the anonymous
CVIU reviewers for their valuable comments, and all
authors that contributed figures to this overview.

References

[1] Ankur Agarwal, Bill Triggs, Tracking articulated motion using a
mixture of autoregressive models, in: Proceedings of the European
Conference on Computer Vision (ECCV’04), Lecture Notes in
Computer Science, vol. 3 (3024), Prague, Czech Republic, May 2004,
pp. 54-65.

[2] Ankur Agarwal, Bill Triggs, A local basis representation for
estimating human pose from cluttered images, in: Proceedings of
the Asian Conference on Computer Vision (ACCV’06)—Part 1,
Lecture Notes in Computer Science, vol. 3851, Hyderabad, India,
January 2006, pp. 50-59.

[3] Ankur Agarwal, Bill Triggs, Recovering 3D human pose from
monocular images, IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI) 28 (1) (2006) 44-58.

[4] Jake K. Aggarwal, Qin Cai, Human motion analysis: a review,
Computer Vision and Image Understanding (CVIU) 73 (3) (1999)
428-440.

[5] Carlos Barrén, loannis A. Kakadiaris, Estimating anthropometry
and pose from a single uncalibrated image, Computer Vision and
Image Understanding (CVIU) 81 (3) (2001) 269-284.

[6] Carlos Barrén, loannis A. Kakadiaris, Monocular human motion
tracking, Multimedia Systems 10 (2004) 118-130.

[7] Serge Belongie, Jitendra Malik, Jan Puzicha, Shape matching and
object recognition using shape contexts, IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 24 (4) (2002)
509-522.

[8] Chiraz BenAbdelkader, Larry S. Davis, Estimation of anthropo-
measures from a single calibrated camera, in: Proceedings of the
International Conference on Automatic Face and Gesture Recog-
nition (FGR’06), Southampton, United Kingdom, April 2006, pp.
499-504.

[9] Andrea Bottino, Aldo Laurentini, A silhouette-based technique for
the reconstruction of human movement, Computer Vision and
Image Understanding (CVIU) 83 (1) (2001) 79-95.

[10] Richard Bowden, Tom A. Mitchell, Mansoor Sarhadi, Non-linear
statistical models for the 3D reconstruction of human pose and
motion from monocular image sequences, Image and Vision
Computing 18 (9) (2000) 729-737.

[11] Matthew Brand, Shadow puppetry, in: Proceedings of the Interna-
tional Conference on Computer Vision (ICCV’99), vol. 2, Kerkyra,
Greece, September 1999, pp. 1237-1244.

[12] Matthieu Bray, Pushmeet Kohli, Philip H. Torr, Posecut: Simulta-
neous segmentation and 3d pose estimation of humans using
dynamic graph-cuts, in: Proceedings of the European Conference
on Computer Vision (ECCV’06), Lecture Notes in Computer
Science, vol. 2 (3952), Graz, Austria, May 2006, pp. 642-655.

[13] Christoph Bregler, Jitendra Malik, Katherine Pullen, Twist based
acquisition and tracking of animal and human kinematics, Interna-
tional Journal of Computer Vision 56 (3) (2004) 179-194.

[14] Fabrice Caillette, Aphrodite Galata, Toby Howard, Real-time 3-D
human body tracking using variable length markov models, in:
Proceedings of the British Machine Vision Conference (BMVC’05),
vol. 1, Oxford, United Kingdom, September 2005, pp. 469-478.

[15] Joel Carranza, Christian Theobalt, Marcus A. Magnor, Hans-Peter
Seidel, Free-viewpoint video of human actors, ACM Transactions
on Computer Graphics 22 (3) (2003) 569-577.

[16] Tat-Jen Cham, James M. Rehg, A multiple hypothesis approach to
figure tracking, in: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR’99), vol. 2, Ft. Collins, CO,
June 1999, pp. 239-245.

[17] German K.M. Cheung, Simon Baker, Takeo Kanade, Shape-from-
silhouette of articulated objects and its use for human body
kinematics estimation and motion capture, in: Proceedings of the
Conference on Computer Vision and Pattern Recognition
(CVPR’03), vol. 1, Madison, WI, June 2003, pp. 77-84.

[18] Chi-Wei Chu, Odest C. Jenkins, Maja J. Mataric, Markerless
kinematic model and motion capture from volume sequences, in:
Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR’03), vol. 2, Madison, WI, June 2003, pp.
475-483.

[19] Quentin Delamarre, Olivier Faugeras, 3D articulated models and
multiview tracking with physical forces, Computer Vision and Image
Understanding (CVIU) 81 (3) (2001) 328-357.

[20] David Demirdjian, Combining geometric- and view-based
approaches for articulated pose estimation, in: Proceedings of the
European Conference on Computer Vision (ECCV’04), Lecture
Notes in Computer Science, vol. 3 (3023), Prague, Czech Republic,
May 2004, pp. 183-194.

[21] Jonathan Deutscher, Ian Reid, Articulated body motion capture by
stochastic search, International Journal of Computer Vision 61 (2)
(2005) 185-205.

[22] David E. DiFranco, Tat-Jen Cham, James M. Rehg, Reconstruction
of 3-D figure motion from 2-D correspondences, in: Proceedings of
the Conference on Computer Vision and Pattern Recognition
(CVPR’01), vol. 1, Kauai, HI, December 2001, pp. 307-314.

[23] Tom Drummond, Roberto Cipolla, Real-time tracking of highly
articulated structures in the presence of noisy measurements, in:
Proceedings of the International Conference On Computer Vision
(ICCV’°01), vol. 2, Vancouver, Canada, July 2001, pp. 315-320.

[24] Ahmed M. Elgammal, Chan-Su Lee, Inferring 3D body pose from
silhouettes using activity manifold learning, in: Proceedings of the
Conference on Computer Vision and Pattern Recognition
(CVPR’04), vol. 2, Washington, DC, June 2004, pp. 681-688.

[25] Ali Erol, George Bebis, Mircea Nicolescu, Richard D. Boyle,
Xander Twombly, Vision-based hand pose estimation: A review,
Computer Vision and Image Understanding, this issue, doi:10.1016/
j.cviu.2006.10.012.

[26] Pedro F. Felzenszwalb, Daniel P. Huttenlocher, Pictorial structures
for object recognition, International Journal of Computer Vision 61
(1) (2005) 55-79.

[27] Dariu M. Gavrila, The visual analysis of human movement: A
survey, Computer Vision and Image Understanding (CVIU) 73 (1)
(1999) 82-92.

[28] Dariu M. Gavrila, Larry S. Davis, Tracking of humans in action: A
3D model-based approach, in: Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR’96), San Fran-
cisco, CA, June 1996, pp. 73-80.

[29] Neil J. Gordon, David J. Salmond, Adrian F.M. Smith, Novel
approach to nonlinear/nonGaussian Bayesian state estimation, in:
IEE Proceedings-F (Radar and Signal Processing), vol. 140, April
1993, pp. 107-113.

[30] Kristen Grauman, Gregory Shakhnarovich, Trevor Darrell, Infer-
ring 3D structure with a statistical image-based shape model, in:
Proceedings of the International Conference on Computer Vision
(ICCV’03), vol. 1, Nice, France, October 2003, pp. 641-647.

[31] Keith Grochow, Steven L. Martin, Aaron Hertzmann, Zoran
Popovic, Style-based inverse kinematics, ACM Transactions on
Graphics 23 (3) (2004) 522-531.

[32] Tony X. Han, Huazhong Ning, Thomas S. Huang, Efficient
nonparametric belief propagation with application to articulated
body tracking, in: Proceedings of the Conference on Computer


http://dx.doi.org/10.1016/j.cviu.2006.10.012
http://dx.doi.org/10.1016/j.cviu.2006.10.012

16 R. Poppe | Computer Vision and Image Understanding 108 (2007) 4-18

Vision and Pattern Recognition (CVPR’06), vol. 1, New York, NY,
June 2006, pp. 214-221.

[33] Ismail Haritaoglu, David Harwood, Larry S. Davis, W: A real-
time system detecting and tracking people in 2 1/2D, in: Proceedings
of the European Conference on Computer Vision (ECCV’98),
Lecture Notes in Computer Science, vol. 1 (1406), Freiburg,
Germany, June 1998, pp. 877-892.

[34] David Hogg, Model-based vision: a program to see a walking
person, Image and Vision Computing 1 (1) (1983) 5-20.

[35] Nicholas R. Howe, Silhouette lookup for automatic pose tracking,
in: Proceedings of the Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW’04), Los Alamitos, CA, June
2004, p. 15.

[36] Nicholas R. Howe, Flow lookup and biological motion perception,
in: Proceedings of the Internation Conference on Image Processing
(ICIP’05), vol. 3, Genova, Italy, September 2005, pp. 1168-1171.

[37] Nicholas R. Howe, Boundary fragment matching and articulated
pose under occlusion, in: Proceedings of the International Confer-
ence on Articulated Motion and Deformable Objects (AMDO’06),
Lecture Notes in Computer Science, (4069), Port d’Andratx, Spain,
July 2006, pp. 271-280.

[38] Nicholas R. Howe, Michael E. Leventon, William T. Freeman,
Bayesian reconstruction of 3D human motion from single-camera
video, in: Advances in Neural Information Processing Systems
(NIPS) 12, Denver, CO, November 2000, pp. 820-826.

[39] Gang Hua, Ming-Hsuan Yang, Ying Wu, Learning to estimate
human pose with data driven belief propagation, in: Proceedings of
the Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 2, San Diego, CA, June 2005, pp. 747-754.

[40] Yu Huang, Thomas S. Huang, Model-based human body tracking,
in: Proceedings of the International Conference on Pattern Recog-
nition (ICPR’02), vol. 1, Quebec, Canada, August 2002, pp.
552-555.

[41] Sergey loffe, David A. Forsyth, Probabilistic methods for finding
people, International Journal of Computer Vision 43 (1) (2001)
45-68.

[42] Michael Isard, Andrew Blake, CONDENSATION—conditional
density propagation for visual tracking, International Journal of
Computer Vision 29 (1) (1998) 5-28.

[43] Nebojsa Jojic, Jin Gu, Helen Shen, Thomas S. Huang, 3-D
reconstruction of multipart, self-occluding objects, in: Proceedings
of the Asian Conference on Computer Vision (ACCV’98), Hong
Kong, China, January 1998, pp. 455-462.

[44] Shanon X. Ju, Michael J. Black, Yaser Yacoob, Cardboard people:
A parameterized model of articulated image motion, in: Proceedings
of the International Conference on Automatic Face and Gesture
Recognition (FGR’96), Killington, VT, October 1996, pp. 38-44.

[45] Ioannis A. Kakadiaris, Dimitris N. Metaxas, Three-dimensional
human body model acquisition from multiple views, International
Journal of Computer Vision 30 (3) (1998) 191-218.

[46] Ioannis A. Kakadiaris, Dimitris N. Metaxas, Model-based estima-
tion of 3D human motion, IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 22 (12) (2000) 1453-1459.

[47] Roland Kehl, Luc Van Gool, Markerless tracking of complex
human motions from multiple views, Computer Vision and Image
Understanding (CVIU) 104 (2-3) (2006) 190-209.

[48] Oliver D. King, David A. Forsyth, How does CONDENsSATION behave
with a finite number of samples?, in: Proceedings of the European
Conference on Computer Vision (ECCV’00), Lecture Notes in
Computer Science, vol. 1 (1842), Dublin, Ireland, June 2000, pp.
695-709.

[49] Nils Krahnstover, Mohammed Yeasin, Rajeev Sharma, Automatic
acquisition and initialization of articulated models, Machine Vision
and Applications 14 (4) (2003) 218-228.

[50] Xiangyang Lan, Daniel P. Huttenlocher, Beyond trees: common-
factor models for 2D human pose recovery, in: Proceedings of the
International Conference On Computer Vision (ICCV’05), vol. 1,
Beijing, China, October 2005, pp. 470-477.

[51] Neil D. Lawrence, Gaussian process latent variable models for
visualisation of high dimensional dataAdvances in Neural Informa-
tion Processing Systems (NIPS), vol. 16, Vancouver, Canada, 2003,
pp. 329-336.

[52] Hsi-Jian J. Lee, Zen Chen, Determination of 3D human body
posture from a single view, Computer Vision, Graphics and Image
Processing 30 (2) (1985) 148-168.

[53] Mun Wai Lee, Isaac Cohen, Proposal maps driven mcmc for
estimating human body pose in static images, in: Proceedings of the
Conference on Computer Vision and Pattern Recognition
(CVPR’04), vol. 2, Washington, DC, June 2004, pp. 334-341.

[54] Mun Wai Lee, Isaac Cohen, Soon Ki Jung, Particle filter with
analytical inference for human body tracking, in: Proceedings of the
Workshop on Motion and Video Computing (MOTION’02),
Orlando, FL, December 2002, pp. 159-168.

[55] Mun Wai Lee, Ramakant Nevatia, Human pose tracking using
multi-level structured models, in: Proceedings of the European
Conference on Computer Vision (ECCV’06), Lecture Notes in
Computer Science, vol. 3 (3953), Graz, Austria, May 2006, pp. 368—
381.

[56] Rui Li, Ming-Hsuan Yang, Stan Sclaroff, Tai-Peng Tian, Monocular
tracking of 3D human motion with a coordinated mixture of factor
analyzers, in: Proceedings of the European Conference on Computer
Vision (ECCV’06), Lecture Notes in Computer Science, vol. 2
(3952), Graz, Austria, May 2006, pp. 137-150.

[57] David Liebowitz, Stefan Carlsson, Uncalibrated motion capture
exploiting articulated structure constraints, International Journal of
Computer Vision 51 (3) (2003) 171-187.

[58] Gareth Loy, Martin Eriksson, Josephine Sullivan, Stefan Carlsson,
Monocular 3D reconstruction of human motion in long action
sequences, in: Proceedings of the European Conference on Com-
puter Vision (ECCV’04), Lecture Notes in Computer Science, vol. 4
(3024), Prague, Czech Republic, May 2004, pp. 442-455.

[59] John MacCormick, Michael Isard, Partitioned sampling, articulated
objects, and interface-quality hand tracking, in: Proceedings of the
European Conference on Computer Vision (ECCV’00), Lecture
Notes in Computer Science, vol. 2 (1843), Dublin, Ireland, June
2000, pp. 3-19.

[60] Antonio S. Micilotta, Eng-Jon Ong, Richard Bowden, Real-time
upper body detection and 3D pose estimation in monoscopic images,
in: Proceedings of the European Conference on Computer Vision
(ECCV’06), Lecture Notes in Computer Science, vol. 3 (3953), Graz,
Austria, May 2006, pp. 139-150.

[61] Ivana Miki¢, Mohan Trivedi, Edward Hunter, Pamela Cosman,
Human body model acquisition and tracking using voxel data,
International Journal of Computer Vision 53 (3) (2003) 199-
223.

[62] Anurag Mittal, Liang Zhao, Larry S. Davis, Human body pose
estimation using silhouette shape analysis, in: Proceedings of the
Conference on Advanced Video and Signal Based Surveillance
(AVSS’03), Miami, FL, July 2003, pp. 263-270.

[63] Thomas B. Moeslund, Erik Granum, A survey of computer vision-
based human motion capture, Computer Vision and Image Under-
standing (CVIU) 81 (3) (2001) 231-268.

[64] Thomas B. Moeslund, Adrian Hilton, Volker Kriiger, A survey of
advances in vision-based human motion capture and analysis,
Computer Vision and Image Understanding (CVIU) 104 (2-3)
(2006) 90-126.

[65] Kooksang Moon, Vladimir I. Pavlovi¢, Impact of dynamics on
subspace embedding and tracking of sequences, in: Proceedings of
the Conference on Computer Vision and Pattern Recognition
(CVPR’06), vol. 1, New York, NY, June 2006, pp. 198-205.

[66] Greg Mori, Jitendra Malik, Recovering 3D human body configu-
rations using shape contexts, IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 28 (7) (2006) 1052-1062.

[67] Greg Mori, Xiaofeng Ren, Alexei A. Efros, Jitendra Malik,
Recovering human body configurations: Combining segmentation
and recognition, in: Proceedings of the Conference on Computer



R. Poppe | Computer Vision and Image Understanding 108 (2007) 4-18 17

Vision and Pattern Recognition (CVPR’04), vol. 2, Washington,
DC, June 2004, pp. 326-333.

[68] Daniel D. Morris, James M. Rehg, Singularity analysis for articu-
lated object tracking, in: Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR’98), Santa Barbara,
CA, June 1998, pp. 289-297.

[69] Ramanan Navaratnam, Andrew W. Fitzgibbon, Roberto Cipolla,
Semi-supervised learning of joint density models for human pose
estimation, in: Proceedings of the British Machine Vision Confer-
ence (BMVC’06), vol. 2, Edinburgh, United Kingdom, September
2006, pp. 679-688.

[70] Ramanan Navaratnam, Arasanathan Thayananthan, Philip H.
Torr, Roberto Cipolla, Hierarchical part-based human body pose
estimation, in: Proceedings of the British Machine Vision Confer-
ence (BMVC’05), Oxford, United Kingdom, September 2005.

[71] Huazhong Ning, Tieniu Tan, Liang Wang, Weiming Hu, People
tracking based on motion model and motion constraints with
automatic initialization, Pattern Recognition 37 (7) (2004)
1423-1440.

[72] Eng-Jon Ong, Shaogang Gong, A dynamic 3D human model
using hybrid 2D-3D representations in hierarchical pca space, in:
Proceedings of the British Machine Vision Conference
(BMVC’99), Nottingham, United Kingdom, September 1999,
pp. 33-42.

[73] Eng-Jon Ong, Antonio S. Micilotta, Richard Bowden, Adrian
Hilton, Viewpoint invariant exemplar-based 3D human tracking,
Computer Vision and Image Understanding (CVIU) 104 (2-3)
(2006) 178-189.

[74] Joseph O’Rourke, Norman 1. Badler, Model-based image analysis of
human motion using constraint propagation, IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 2 (6) (1980)
522-536.

[75] Carlos Orrite-Urunuela, Jestis Martinez del Rincén, José Elias
Herrero-Jaraba, Grégory Rogez, 2D silhouette and 3D skeletal
models for human detection and tracking, in: Proceedings of the
International Conference on Pattern Recognition (ICPR’04), vol. 4,
Cambridge, United Kingdom, August 2004, pp. 244-247.

[76] Vasu Parameswaran, Rama Chellappa, View independent human
body pose estimation from a single perspective image, in: Proceed-
ings of the Conference on Computer Vision and Pattern Recognition
(CVPR’04), vol. 2, Washington, DC, June 2004, pp. 16-22.

[77] Vladimir 1. Pavlovi¢, James M. Rehg, Tat-Jen Cham, Kevin P.
Murphy, A dynamic Bayesian network approach to figure tracking
using learned dynamic models, in: Proceedings of the International
Conference on Computer Vision (ICCV’99), vol. 1, Kerkyra, Greece,
September 1999, pp. 94-101.

[78] Vladimir 1. Pavlovi¢, Rajeev Sharma, Thomas S. Huang, Visual
interpretation of hand gestures for human-computer interaction: A
review, IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 19 (7) (1997) 677-695.

[79] Rolf Plankers, Pascal Fua, Tracking and modeling people in video
sequences, Computer Vision and Image Understanding (CVIU) 81
(3) (2001) 285-302.

[80] Deva Ramanan, Learning to parse images of articulated bodies, in:
Advances in Neural Information Processing Systems (NIPS) 19,
Vancouver, Canada, December 2006, to appear.

[81] Deva Ramanan, David A. Forsyth, Finding and tracking people
from the bottom up, in: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR’03), vol. 2, Madison, WI,
June 2003, pp. 467-474.

[82] Deva Ramanan, Cristian Sminchisescu, Training deformable models
for localization, in: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR’06), vol. 1, New York, NY,
June 2006, pp. 206-213.

[83] Liu Ren, Gregory Shakhnarovich, Jessica K. Hodgins, Hanspeter
Pfister, Paul A. Viola, Learning silhouette features for control of
human motion, ACM Transactions on Computer Graphics 24 (4)
(2005) 1303-1331.

[84] Xiaofeng Ren, Alexander C. Berg, Jitendra Malik, Recovering
human body configurations using pairwise constraints between
parts, in: Proceedings of the International Conference On Computer
Vision (ICCV’05), vol. 1, Beijing, China, October 2005, pp. 824-831.

[85] Timothy J. Roberts, Stephen J. McKenna, Ian W. Ricketts, Human
tracking using 3d surface colour distributions, Image and Vision
Computing 24 (12) (2006) 1332-1342.

[86] Grégory Rogez, José J. Guerrero, Jesus Martinez, Carlos Orrite-
Urunuela, Viewpoint independent human motion analysis in man-
made environments, in: Proceedings of the British Machine Vision
Conference (BMVC’06), vol. 2, Edinburgh, United Kingdom,
September 2006, pp. 659-668.

[87] Karl Rohr, Towards model-based recognition of human movements
in image sequences, Computer Vision, Graphics, and Image
Processing: Image Understanding 59 (1) (1994) 94-115.

[88] Rémi Ronfard, Cordelia Schmid, Bill Triggs, Learning to parse
pictures of people, in: Proceedings of the European Conference on
Computer Vision (ECCV’02), Lecture Notes in Computer Science,
vol. 4 (2353), Copenhagen, Denmark, May 2002, pp. 700-714.

[89] Rémer E. Rosales, Stan Sclaroff, Inferring body pose without
tracking body parts, in: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR’00), vol. 2, Hilton Head
Island, SC, June 2000, pp. 721-727.

[90] Rémer E. Rosales, Matheen Siddiqui, Jonathan Alon, Stan Sclaroff,
Estimating 3D body pose using uncalibrated cameras, in: Proceed-
ings of the Conference on Computer Vision and Pattern Recognition
(CVPR’01), vol. 1, Kauai, HI, December 2001, pp. 821-827.

[91] Gregory Shakhnarovich, Paul A. Viola, Trevor Darrell, Fast pose
estimation with parameter-sensitive hashing, in: Proceedings of the
International Conference on Computer Vision (ICCV’03), vol. 2,
Nice, France, October 2003, pp. 750-759.

[92] Hedvig Sidenbladh, Michael J. Black, Learning the statistics of
people in images and video, International Journal of Compututer
Vision 54 (1-3) (2003) 181-207.

[93] Hedvig Sidenbladh, Michael J. Black, David J. Fleet, Stochastic
tracking of 3D human figures using 2D image motion, in: Proceed-
ings of the European Conference on Computer Vision (ECCV’00),
Lecture Notes in Computer Science, vol. 2 (1843), Dublin, Ireland,
June 2000, pp. 702-718.

[94] Hedvig Sidenbladh, Michael J. Black, Leonid Sigal, Implicit
probabilistic models of human motion for synthesis and tracking,
in: Proceedings of the European Conference on Computer Vision
(ECCV’02), Lecture Notes in Computer Science, vol. 1 (2350),
Copenhagen, Denmark, May 2002, pp. 784-800.

[95] Leonid Sigal, Sidharth Bhatia, Stefan Roth, Michael J. Black,
Michael Isard, Tracking loose-limbed people, in: Proceedings of the
Conference on Computer Vision and Pattern Recognition
(CVPR’04), vol. 1, Washington, DC, June 2004, pp. 421-428.

[96] Leonid Sigal, Michael J. Black, Humaneva: Synchronized video and
motion capture dataset for evaluation of articulated human motion,
Technical Report CS-06-08, Brown University, Department of
Computer Science, Providence, RI, September 2006.

[97] Leonid Sigal, Michael J. Black, Measure locally, reason globally:
Occlusion-sensitive articulated pose estimation, in: Proceedings of
the Conference on Computer Vision and Pattern Recognition
(CVPR’06), vol. 2, New York, NY, June 2006, pp. 2041-2048.

[98] Leonid Sigal, Michael J. Black, Predicting 3D people from 2D
pictures. In Proceedings of the International Conference on Artic-
ulated Motion and Deformable Objects (AMDQO’06), Lecture Notes
in Computer Science, (4069), Port d’Andratx, Spain, July 2006, pp.
185-195.

[99] Leonid Sigal, Michael Isard, Benjamin Sigelman, Michael J. Black,
Attractive people: Assembling loose-limbed models using non-
parametric belief propagationAdvances in Neural Information
Processing Systems (NIPS), vol. 16, Vancouver, Canada, 2003, pp.
1539-1546.

[100] Cristian Sminchisescu, Estimation Algorithms For Ambiguous
Visual Models—Three Dimensional Human Modeling And Motion



18 R. Poppe | Computer Vision and Image Understanding 108 (2007) 4-18

Reconstruction in: Monocular Video Sequences. PhD thesis, Insti-
tute National Politechnique de Grenoble (INPG), Grenoble, July
2002.

[101] Cristian Sminchisescu, Allan D. Jepson, Generative modeling for
continuous non-linearly embedded visual inference, in: Proceedings
of the International Conference on Machine Learning (ICML’04),
Banff, Canada, July 2004, pp. 759-766.

[102] Cristian Sminchisescu, Atul Kanaujia, Zhiguo Li, Dimitris N.
Metaxas, Discriminative density propagation for 3D human motion
estimation, in: Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR’05), vol. 1, San Diego, CA, June
2005, pp. 390-397.

[103] Cristian Sminchisescu, Atul Kanaujia, Dimitris Metaxas, Learning
joint top—down and bottom—up processes for 3D visual inference, in:
Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, New York, NY, June 2006, pp.
1743-1752.

[104] Cristian Sminchisescu, Atul Kanaujia, Dimitris N. Metaxas, Con-
ditional models for contextual human motion recognition, Com-
puter Vision and Image Understanding (CVIU) 104 (2-3) (2006)
210-220.

[105] Cristian Sminchisescu, Bill Triggs, Estimating articulated human
motion with covariance scaled sampling, International Journal of
Robotic Research 22 (6) (2003) 371-392.

[106] Cristian Sminchisescu and Bill Triggs, Kinematic jump processes for
monocular 3D human tracking, in: Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR’03), vol. 1,
Madison, WI, June 2003, pp. 69-76.

[107] Yang Song, Luis Goncalves, Pietro Perona, Unsupervised learning
of human motion, IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI) 25 (7) (2003) 814-827.

[108] Josephine Sullivan, Stefan Carlsson, Recognizing and tracking
human action, in: Proceedings of the European Conference on
Computer Vision (ECCV’02), Lecture Notes in Computer Science,
vol. 1 (2350), Copenhagen, Denmark, May 2002, pp. 629-644.

[109] Therdsak Tangkuampien, David Suter, Real-time human pose
inference using kernel principal component pre-image approxima-
tions, in: Proceedings of the British Machine Vision Conference
(BMVC’06), vol. 2, Edinburgh, United Kingdom, September 2006,
pp- 599-608.

[110] Leonid Taycher, Gregory Shakhnarovich, David Demirdjian, Tre-
vor Darrell, Conditional random people: Tracking humans with crfs
and grid filters, in: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR’06), vol. 1, New York, NY,
June 2006, pp. 222-229.

[111] Camillo J. Taylor, Reconstruction of articulated objects from point
correspondences in a single uncalibrated image, Computer Vision
and Image Understanding (CVIU) 80 (3) (2000) 349-363.

[112] Yee Whye Teh, Sam T. Roweis, Automatic alignment of local
representationsAdvances in Neural Information Processing Systems
(NIPS), vol. 15, Vancouver, Canada, 2002, pp. 841-848.

[113] Tai-Peng Tian, Rui Li, Stan Sclaroff, Tracking human body pose on
a learned smooth space. Technical Report BUCS-TR-2005-029,
Boston University, Computer Science Department, Boston, MA,
July 2005.

[114] Kentaro Toyama, Andrew Blake, Probabilistic tracking with exem-
plars in a metric space, International Journal of Computer Vision 48
(1) (2002) 9-19.

[115] Raquel Urtasun, David J. Fleet, Pascal Fua, 3D people tracking
with gaussian process dynamical models, in: Proceedings of the
Conference on Computer Vision and Pattern Recognition
(CVPR’06), vol. 1, New York, NY, June 2006, pp. 238-245.

[116] Raquel Urtasun, David J. Fleet, Aaron Hertzmann, Pascal Fua,
Priors for people tracking from small training sets, in: Proceedings of
the International Conference On Computer Vision (ICCV’05), vol.
1, Beijing, China, October 2005, pp. 403-410.

[117] Paul A. Viola, Michael J. Jones, Rapid object detection using a
boosted cascade of simple features, in: Proceedings of the Confer-
ence on Computer Vision and Pattern Recognition (CVPR’01), vol.
1, Kauai, HI, December 2001, pp. 511-518.

[118] Stefan Wachter, Hans-Hellmut Nagel, Tracking persons in monoc-
ular image sequences, Computer Vision and Image Understanding
(CVIU) 74 (3) (1999) 174-192.

[119] Jack M. Wang, David J. Fleet, Aaron Hertzmann, Gaussian process
dynamical modelsAdvances in Neural Information Processing Sys-
tems (NIPS), vol. 18, Vancouver, Canada, 2005, pp. 1441-1448.

[120] Jessica J. Wang, Sameer Singh, Video analysis of human dynamics: a
survey, Real-Time Imaging 9 (5) (2003) 321-346.

[121] Liang Wang, Weiming Hu, Tieniu Tan, Recent developments in
human motion analysis, Pattern Recognition 36 (3) (2003)
585-601.

[122] Ping Wang, James M. Rehg, A modular approach to the analysis
and evaluation of particle filters for figure tracking, in: Proceedings
of the Conference on Computer Vision and Pattern Recognition
(CVPR’06), vol. 1, New York, NY, June 2006, pp. 790-797.

[123] Christopher R. Wren, Ali J. Azarbayejani, Trevor Darrell, Alex P.
Pentland, Pfinder: Real-time tracking of the human body, IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI)
19 (7) (1997) 780-785.

[124] Masanobu Yamamoto, Katsutoshi Yagishita, Scene constraints-
aided tracking of human body, in: Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR’00), vol. 1, Hilton
Head Island, SC, June 2000, pp. 151-156.

[125] Wen-Yi Zhao, Rama Chellappa, P. Jonathon Phillips, Azriel
Rosenfeld, Face recognition: A literature survey, ACM Computing
Surveys 35 (3) (2003) 399-458.



	Vision-based human motion analysis: An overview
	Introduction
	Scope of this overview
	Surveys and taxonomies

	Modeling
	Human body models
	Kinematic models
	Shape models

	Image descriptors
	Silhouettes and contours
	Edges
	3D reconstructions
	Color and texture
	Motion
	Combination of descriptors

	Camera considerations
	Environment considerations

	Estimation
	Top-down and bottom-up estimation
	Top-down estimation
	Bottom-up estimation
	Combined top-down and bottom-up estimation

	Single and multiple hypothesis tracking
	Single hypothesis tracking
	Multiple hypothesis tracking
	Batch methods

	3D pose estimation from 2D points
	Motion priors
	Using motion models
	Dimensionality reduction


	Model-free approaches
	Learning-based
	Example-based

	Discussion
	Acknowledgments
	References


